Blind separation of nonlinear mixtures by variational Bayesian learning

نویسندگان

  • Antti Honkela
  • Harri Valpola
  • Alexander Ilin
  • Juha Karhunen
چکیده

Blind separation of sources from nonlinear mixtures is a challenging and often ill-posed problem. We present three methods for solving this problem: an improved nonlinear factor analysis (NFA) method using a multilayer perceptron (MLP) network to model the nonlinearity, a hierarchical NFA (HNFA) method suitable for larger problems and a post-nonlinear NFA (PNFA) method for more restricted post-nonlinear mixtures. The methods are based on variational Bayesian learning, which provides the needed regularisation and allows for easy handling of missing data. While the basic methods are incapable of recovering the correct rotation of the source space, they can discover the underlying nonlinear manifold and allow reconstruction of the original sources using standard linear independent component analysis (ICA) techniques. © 2007 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Blind Source Separation by Variational Bayesian Learning

Blind separation of sources from their linear mixtures is a well understood problem. However, if the mixtures are nonlinear, this problem becomes generally very difficult. This is because both the nonlinear mapping and the underlying sources must be learned from the data in a blind manner, and the problem is highly ill-posed without a suitable regularization. In our approach, multilayer percept...

متن کامل

Advances in Variational Bayesian Nonlinear Blind Source Separation

Linear data analysis methods such as factor analysis (FA), independent component analysis (ICA) and blind source separation (BSS) as well as state-space models such as the Kalman filter model are used in a wide range of applications. In many of these, linearity is just a convenient approximation while the underlying effect is nonlinear. It would therefore be more appropriate to use nonlinear me...

متن کامل

Underdetermined Model-Based Blind Source Separation of Reverberant Speech Mixtures using Spatial Cues in a Variational Bayesian Framework

In this paper, we propose a new method for underdetermined blind source separation of reverberant speech mixtures by classifying each time-frequency (T-F) point of the mixtures according to a combined variational Bayesian model of spatial cues, under sparse signal representation assumption. We model the T-F observations by a variational mixture of circularly-symmetric complex-Gaussians. The spa...

متن کامل

Nonlinear underdetermined blind signal separation using Bayesian neural network approach

Nonlinear signal separation and underdetermined signal separation have received much attention in blind signal separation literature. However, neither of them can solve the situation where both nonlinear and underdetermined characteristics exist at the same time. In this paper, a new learning algorithm based on Bayesian statistics is proposed to solve the separation problem of the blind nonline...

متن کامل

Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method

The variational Bayesian nonlinear blind source separation method introduced by Lappalainen and Honkela in 2000 is initialised with linear principal component analysis (PCA). Because of the multilayer perceptron (MLP) network used to model the nonlinearity, the method is susceptible to local minima and therefore sensitive to the initialisation used. As the method is used for nonlinear separatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Digital Signal Processing

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007